Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Genes (Basel) ; 14(4)2023 04 14.
Article in English | MEDLINE | ID: covidwho-2295858

ABSTRACT

Recently, we have observed two significant pandemics caused by communicable (COVID-19) and non-communicable factors (obesity). Obesity is related to a specific genetic background and characterized by immunogenetic features, such as low-grade systemic inflammation. The specific genetic variants include the presence of polymorphism of the Peroxisome Proliferator-Activated Receptors gene (PPAR-γ2; Pro12Ala, rs1801282, and C1431T, rs3856806 polymorphisms), ß-adrenergic receptor gene (3ß-AR; Trp64Arg, rs4994), and Family With Sequence Similarity 13 Member A gene (FAM13A; rs1903003, rs7671167, rs2869967). This study aimed to analyze the genetic background, body fat distribution, and hypertension risk in obese metabolically healthy postmenopausal women (n = 229, including 105 lean and 124 obese subjects). Each patient underwent anthropometric and genetic evaluations. The study has shown that the highest value of BMI was associated with visceral fat distribution. The analysis of particular genotypes has revealed no differences between lean and obese women except for FAM13A rs1903003 (CC), which was more prevalent in lean patients. The co-existence of the PPAR-γ2 C1431C variant with other FAM13A gene polymorphisms [rs1903003(TT) or rs7671167(TT), or rs2869967(CC)] was related to higher BMI values and visceral fat distribution (WHR > 0.85). The co-association of FAM13A rs1903003 (CC) and 3ß-AR Trp64Arg was associated with higher values of systolic (SBP) and diastolic blood pressure (DBP). We conclude that the co-existence of FAM13A variants with C1413C polymorphism of the PPAR-γ2 gene is responsible for body fat amount and distribution.


Subject(s)
COVID-19 , PPAR gamma , Humans , Female , PPAR gamma/genetics , Postmenopause/genetics , Genetic Predisposition to Disease , Polymorphism, Genetic , Obesity/genetics , GTPase-Activating Proteins/genetics
2.
Front Immunol ; 14: 1127358, 2023.
Article in English | MEDLINE | ID: covidwho-2262359

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a severe respiratory disease caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that affects the lower and upper respiratory tract in humans. SARS-CoV-2 infection is associated with the induction of a cascade of uncontrolled inflammatory responses in the host, ultimately leading to hyperinflammation or cytokine storm. Indeed, cytokine storm is a hallmark of SARS-CoV-2 immunopathogenesis, directly related to the severity of the disease and mortality in COVID-19 patients. Considering the lack of any definitive treatment for COVID-19, targeting key inflammatory factors to regulate the inflammatory response in COVID-19 patients could be a fundamental step to developing effective therapeutic strategies against SARS-CoV-2 infection. Currently, in addition to well-defined metabolic actions, especially lipid metabolism and glucose utilization, there is growing evidence of a central role of the ligand-dependent nuclear receptors and peroxisome proliferator-activated receptors (PPARs) including PPARα, PPARß/δ, and PPARγ in the control of inflammatory signals in various human inflammatory diseases. This makes them attractive targets for developing therapeutic approaches to control/suppress the hyperinflammatory response in patients with severe COVID-19. In this review, we (1) investigate the anti-inflammatory mechanisms mediated by PPARs and their ligands during SARS-CoV-2 infection, and (2) on the basis of the recent literature, highlight the importance of PPAR subtypes for the development of promising therapeutic approaches against the cytokine storm in severe COVID-19 patients.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Cytokine Release Syndrome , PPAR alpha , PPAR gamma
3.
Arch Virol ; 168(3): 96, 2023 Feb 26.
Article in English | MEDLINE | ID: covidwho-2258642

ABSTRACT

There is an urgent need to understand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-host interactions involved in virus spread and pathogenesis, which might contribute to the identification of new therapeutic targets. In this study, we investigated the presence of SARS-CoV-2 in postmortem lung, kidney, and liver samples of patients who died with coronavirus disease (COVID-19) and its relationship with host factors involved in virus spread and pathogenesis, using microscopy-based methods. The cases analyzed showed advanced stages of diffuse acute alveolar damage and fibrosis. We identified the SARS-CoV-2 nucleocapsid (NC) in a variety of cells, colocalizing with mitochondrial proteins, lipid droplets (LDs), and key host proteins that have been implicated in inflammation, tissue repair, and the SARS-CoV-2 life cycle (vimentin, NLRP3, fibronectin, LC3B, DDX3X, and PPARγ), pointing to vimentin and LDs as platforms involved not only in the viral life cycle but also in inflammation and pathogenesis. SARS-CoV-2 isolated from a patient´s nasal swab was grown in cell culture and used to infect hamsters. Target cells identified in human tissue samples included lung epithelial and endothelial cells; lipogenic fibroblast-like cells (FLCs) showing features of lipofibroblasts such as activated PPARγ signaling and LDs; lung FLCs expressing fibronectin and vimentin and macrophages, both with evidence of NLRP3- and IL1ß-induced responses; regulatory cells expressing immune-checkpoint proteins involved in lung repair responses and contributing to inflammatory responses in the lung; CD34+ liver endothelial cells and hepatocytes expressing vimentin; renal interstitial cells; and the juxtaglomerular apparatus. This suggests that SARS-CoV-2 may directly interfere with critical lung, renal, and liver functions involved in COVID-19-pathogenesis.


Subject(s)
COVID-19 , Humans , COVID-19/pathology , Fibronectins , Vimentin , SARS-CoV-2 , Endothelial Cells , NLR Family, Pyrin Domain-Containing 3 Protein , PPAR gamma , Lung , Inflammation/pathology , Kidney , Liver
4.
J Food Biochem ; 46(10): e14345, 2022 10.
Article in English | MEDLINE | ID: covidwho-1956770

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic has been caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is a global problem that humanity has not yet found a definitive solution for it. In this regard, a global effort has been done to find effective or potential adjuvant therapies in order to fight this infection. Genistein is a small, biologically active phytoestrogen flavonoid that is found in high amounts in soy and plants of the Fabaceae family. This important compound is known due to its anti-cancer, anti-inflammatory, and antioxidant effects. Additionally, protective effects of genistein have been reported in different pathological conditions through modulating intracellular pathways such as PI3K, Akt, mTOR, NF-κB, PPARγ, AMPK, and Nrf2. Scientific evidence suggests that genistein could have a potential role to treat COVID-19 through its anti-inflammatory and anti-oxidant effects. Furthermore, it appears to interfere with intracellular pathways involved in viral entry into the cell. This review provides a basis for further research and development of clinical applications of genistein as a potential alternative therapy to decrease inflammation and oxidative stress in COVID-19 patients. PRACTICAL APPLICATIONS: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent for the Coronavirus Disease 2019 (COVID-19), has brought unprecedented untold hardship to both developing and developed countries. The inflammation, cytokine storm, and oxidative stress have an important role in the pathogenesis of this infection. In this regard, finding plant-derived compounds with anti-inflammatory and anti-oxidative effects would be very beneficial in reducing the mortality induced by this infection. Genistein an isoflavone derived from soy-rich products possesses versatile biological activities. It has potent anti-inflammatory and anti-oxidative and immunomodulatory effects. Furthermore, this compound may prevent viral entry to host cells and reduce SARS-CoV2-induced lung injury. Therefore, we suggest further studies on the effects of genistein on SARS-Cov-2 infection.


Subject(s)
COVID-19 Drug Treatment , AMP-Activated Protein Kinases , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Genistein/pharmacology , Humans , Inflammation/drug therapy , NF-E2-Related Factor 2 , NF-kappa B , PPAR gamma , Phosphatidylinositol 3-Kinases , Phytochemicals/pharmacology , Phytoestrogens/pharmacology , Proto-Oncogene Proteins c-akt , RNA, Viral , SARS-CoV-2 , TOR Serine-Threonine Kinases
5.
Int J Mol Sci ; 23(13)2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1934133

ABSTRACT

Casein kinase 2 (CK2) is a ubiquitously expressed serine/threonine kinase and is upregulated in human obesity. CX-4945 (Silmitasertib) is a CK2 inhibitor with anti-cancerous and anti-adipogenic activities. However, the anti-adipogenic and pro-lipolytic effects and the mode of action of CX-4945 in (pre)adipocytes remain elusive. Here, we explored the effects of CX-4945 on adipogenesis and lipolysis in differentiating and differentiated 3T3-L1 cells, a murine preadipocyte cell line. CX-4945 at 15 µM strongly reduced lipid droplet (LD) accumulation and triglyceride (TG) content in differentiating 3T3-L1 cells, indicating the drug's anti-adipogenic effect. Mechanistically, CX-4945 reduced the expression levels of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and perilipin A in differentiating 3T3-L1 cells. Strikingly, CX-4945 further increased the phosphorylation levels of cAMP-activated protein kinase (AMPK) and liver kinase B-1 (LKB-1) while decreasing the intracellular ATP content in differentiating 3T3-L1 cells. In differentiated 3T3-L1 cells, CX-4945 had abilities to stimulate glycerol release and elevate the phosphorylation levels of hormone-sensitive lipase (HSL), pointing to the drug's pro-lipolytic effect. In addition, CX-4945 induced the activation of extracellular signal-regulated kinase-1/2 (ERK-1/2), and PD98059, an inhibitor of ERK-1/2, attenuated the CX4945-induced glycerol release and HSL phosphorylation in differentiated 3T3-L1 cells, indicating the drug's ERK-1/2-dependent lipolysis. In summary, this investigation shows that CX-4945 has strong anti-adipogenic and pro-lipolytic effects on differentiating and differentiated 3T3-L1 cells, mediated by control of the expression and phosphorylation levels of CK2, C/EBP-α, PPAR-γ, FAS, ACC, perilipin A, AMPK, LKB-1, ERK-1/2, and HSL.


Subject(s)
Adipogenesis , Casein Kinase II , Naphthyridines , Phenazines , 3T3-L1 Cells , AMP-Activated Protein Kinases/metabolism , Animals , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/metabolism , Cell Differentiation/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Glycerol/pharmacology , Humans , Lipolysis/drug effects , Mice , Naphthyridines/pharmacology , PPAR gamma/metabolism , Perilipin-1/metabolism , Phenazines/pharmacology , Sterol Esterase/metabolism
6.
Front Immunol ; 13: 870787, 2022.
Article in English | MEDLINE | ID: covidwho-1785352

ABSTRACT

Cannabidiol (CBD) can prevent the inflammatory response of SARS-CoV-2 spike protein in Caco-2-cells. This action is coupled with the inhibition of IL-1beta, IL-6, IL-18, and TNF-alpha, responsible for the inflammatory process during SARS-CoV-2 infection. CBD can act on the different proteins encoded by SARS-CoV-2 and as an antiviral agent to prevent the viral infection. Furthermore, recent studies have shown the possible action of CBD as an antagonist of cytokine release syndromes. In the SARS-CoV-2 pathophysiology, the angiotensin-converting enzyme 2 (ACE2) seems to be the key cell receptor for SARS-CoV-2 infection. The WNT/ß-catenin pathway and PPARγ interact in an opposite manner in many diseases, including SARS-CoV-2 infection. CBD exerts its activity through the interaction with PPARγ in SARS-CoV-2 infection. Thus, we can hypothesize that CBD may counteract the inflammatory process of SARS-CoV-2 by its interactions with both ACE2 and the interplay between the WNT/ß-catenin pathway and PPARγ. Vaccines are the only way to prevent COVID-19, but it appears important to find therapeutic complements to treat patients already affected by SARS-CoV-2 infection. The possible role of CBD should be investigated by clinical trials to show its effectiveness.


Subject(s)
COVID-19 Drug Treatment , Cannabidiol , Angiotensin-Converting Enzyme 2 , Caco-2 Cells , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Humans , PPAR gamma , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , beta Catenin
7.
Mol Biol Rep ; 49(7): 5863-5874, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1772970

ABSTRACT

BACKGROUND: Acetaminophen (APAP) is a worldwide antipyretic as well as an analgesic medication. It has been extensively utilized during the outbreak of coronavirus 2019 (COVID-19). APAP misuse would lead to liver injury. Diacerein (DIA), an anthraquinone derivative, has antioxidant and inflammatory properties. Hence, this study attempted to evaluate the impact of DIA treatment on liver injury induced by APAP and its influence on nuclear factor-κB (NF-κB) /toll-like receptor 4 (TLR4)/high mobility group box-1(HMGB-1) signaling as well as the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) expression. METHODS: Male albino rats received 25 as well as 50 mg/kg/day DIA orally for seven days. One hour after the last administration, rats received APAP (1gm/kg, orally). For histopathological analysis, liver tissues and blood were collected, immunohistochemical (IHC) assay, biochemical assay, as well as quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: DIA markedly reduced liver injury markers and ameliorated histopathological changes. Moreover, DIA dose-dependently alleviated oxidative stress status caused by APAP administration along with inflammatory markers, including the level of interleukin-1 beta (IL-1ß), myeloperoxidase (MPO), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6). Furthermore, DIA downregulated protein levels as well as mRNA of HMGB-1, TLR4, NF-κB p65 expression, and enhanced PPAR-γ expression. Moreover, DIA ameliorated apoptotic (Bax) and caspase-3 expressions and increased the anti-apoptotic (Bcl2) expression. CONCLUSIONS: This study demonstrated that DIA exerts anti-apoptotic, anti-inflammatory, and antioxidant properties against liver injury induced by APAP that is attributed to inhibition of the HMGB1/TLR4/NF-κB pathway, besides upregulation of the expression of PPAR-γ.


Subject(s)
COVID-19 , Chemical and Drug Induced Liver Injury , HMGB1 Protein , Acetaminophen , Animals , Anthraquinones/metabolism , Anthraquinones/pharmacology , Anthraquinones/therapeutic use , Antioxidants/metabolism , Antioxidants/pharmacology , Chemical and Drug Induced Liver Injury/metabolism , HMGB1 Protein/metabolism , Humans , Liver/metabolism , Male , NF-kappa B/metabolism , PPAR gamma/metabolism , Rats , Toll-Like Receptor 4/genetics
8.
Iran J Med Sci ; 47(2): 114-122, 2022 03.
Article in English | MEDLINE | ID: covidwho-1761632

ABSTRACT

Background: Negative effects of statins on glucose metabolism have been reported. The present study aimed to investigate the effects of co-administration of vitamin E and atorvastatin on glycemic control in hyperlipidemic patients with type 2 diabetes mellitus (T2DM). Methods: A randomized double-blind clinical trial was conducted at Vali-e-Asr Teaching Hospital (Zanjan, Iran) from July 2017 to March 2018. A total of 30 T2DM female patients were allocated to two groups, namely atorvastatin with placebo (n=15) and atorvastatin with vitamin E (n=15). The patients received daily 20 mg atorvastatin and 400 IU vitamin E or placebo for 12 weeks. Anthropometric and biochemical measures were recorded pre- and post-intervention. Peroxisome proliferator-activated receptor-γ (PPAR-γ) expression was measured in peripheral blood mononuclear cells (PBMCs). Independent sample t test and paired t test were used to analyze between- and within-group variables, respectively. The analysis of covariance (ANCOVA) was used to adjust the effect of baseline variables on the outcomes. P<0.05 was considered statistically significant. Results: After baseline adjustment, there was a significant improvement in homeostatic model assessment for insulin resistance (HOMA-IR) (P=0.04) and serum insulin (P<0.001) in the atorvastatin with vitamin E group compared to the atorvastatin with the placebo group. In addition, co-administration of vitamin E with atorvastatin significantly upregulated PPAR-γ expression (OR=5.4, P=0.04) in the PBMCs of T2DM patients. Conclusion: Co-administration of vitamin E and atorvastatin reduced insulin resistance and improved PPAR-γ mRNA expression. Further studies are required to substantiate our findings. Trial registration number: IRCT 20170918036256N.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Atorvastatin/metabolism , Atorvastatin/pharmacology , Atorvastatin/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Double-Blind Method , Female , Humans , Leukocytes, Mononuclear/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Vitamin E/metabolism , Vitamin E/pharmacology , Vitamin E/therapeutic use
9.
Cells ; 10(12)2021 12 08.
Article in English | MEDLINE | ID: covidwho-1597185

ABSTRACT

Beta-3 adrenergic receptor activation via exercise or CL316,243 (CL) induces white adipose tissue (WAT) browning, improves glucose tolerance, and reduces visceral adiposity. Our aim was to determine if sex or adipose tissue depot differences exist in response to CL. Daily CL injections were administered to diet-induced obese male and female mice for two weeks, creating four groups: male control, male CL, female control, and female CL. These groups were compared to determine the main and interaction effects of sex (S), CL treatment (T), and WAT depot (D). Glucose tolerance, body composition, and energy intake and expenditure were assessed, along with perigonadal (PGAT) and subcutaneous (SQAT) WAT gene and protein expression. CL consistently improved glucose tolerance and body composition. Female PGAT had greater protein expression of the mitochondrial uncoupling protein 1 (UCP1), while SQAT (S, p < 0.001) was more responsive to CL in increasing UCP1 (S×T, p = 0.011) and the mitochondrial biogenesis induction protein, PPARγ coactivator 1α (PGC1α) (S×T, p = 0.026). Females also displayed greater mitochondrial OXPHOS (S, p < 0.05) and adiponectin protein content (S, p < 0.05). On the other hand, male SQAT was more responsive to CL in increasing protein levels of PGC1α (S×T, p = 0.046) and adiponectin (S, p < 0.05). In both depots and in both sexes, CL significantly increased estrogen receptor beta (ERß) and glucose-related protein 75 (GRP75) protein content (T, p < 0.05). Thus, CL improves systemic and adipose tissue-specific metabolism in both sexes; however, sex differences exist in the WAT-specific effects of CL. Furthermore, across sexes and depots, CL affects estrogen signaling by upregulating ERß.


Subject(s)
Adipose Tissue, Brown/metabolism , HSP70 Heat-Shock Proteins/genetics , Membrane Proteins/genetics , PPAR gamma/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Uncoupling Protein 1/genetics , Adipose Tissue/metabolism , Adipose Tissue, Brown/growth & development , Adipose Tissue, White/metabolism , Animals , Body Composition/genetics , Dioxoles/pharmacology , Energy Metabolism/genetics , Estrogen Receptor beta/genetics , Estrogens/genetics , Estrogens/metabolism , Female , Glucose Tolerance Test , Humans , Male , Mice , Mitochondria/genetics , Mitochondria/metabolism , Receptors, Adrenergic, beta-3/genetics , Receptors, Adrenergic, beta-3/metabolism , Sex Characteristics
10.
Bioengineered ; 12(2): 12461-12469, 2021 12.
Article in English | MEDLINE | ID: covidwho-1585255

ABSTRACT

Severe mortality due to the COVID-19 pandemic resulted from the lack of effective treatment. Although COVID-19 vaccines are available, their side effects have become a challenge for clinical use in patients with chronic diseases, especially cancer patients. In the current report, we applied network pharmacology and systematic bioinformatics to explore the use of biochanin A in patients with colorectal cancer (CRC) and COVID-19 infection. Using the network pharmacology approach, we identified two clusters of genes involved in immune response (IL1A, IL2, and IL6R) and cell proliferation (CCND1, PPARG, and EGFR) mediated by biochanin A in CRC/COVID-19 condition. The functional analysis of these two gene clusters further illustrated the effects of biochanin A on interleukin-6 production and cytokine-cytokine receptor interaction in CRC/COVID-19 pathology. In addition, pathway analysis demonstrated the control of PI3K-Akt and JAK-STAT signaling pathways by biochanin A in the treatment of CRC/COVID-19. The findings of this study provide a therapeutic option for combination therapy against COVID-19 infection in CRC patients.


Subject(s)
Anticarcinogenic Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Colorectal Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic/drug effects , Genistein/therapeutic use , Phytoestrogens/therapeutic use , Atlases as Topic , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/virology , Cyclin D1/genetics , Cyclin D1/immunology , ErbB Receptors/genetics , ErbB Receptors/immunology , Humans , Interleukin-1alpha/genetics , Interleukin-1alpha/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Janus Kinases/genetics , Janus Kinases/immunology , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Molecular Targeted Therapy/methods , Multigene Family , Network Pharmacology/methods , PPAR gamma/genetics , PPAR gamma/immunology , Pharmacogenetics/methods , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/immunology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , STAT Transcription Factors/genetics , STAT Transcription Factors/immunology , Signal Transduction
11.
Phytother Res ; 35(12): 6893-6903, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1568309

ABSTRACT

Given the abundancy of angiotensin converting enzyme 2 (ACE-2) receptors density, beyond the lung, the intestine is considered as an alternative site of infection and replication for severe acute respiratory syndrome by coronavirus type 2 (SARS-CoV-2). Cannabidiol (CBD) has recently been proposed in the management of coronavirus disease 2019 (COVID-19) respiratory symptoms because of its anti-inflammatory and immunomodulatory activity exerted in the lung. In this study, we demonstrated the in vitro PPAR-γ-dependent efficacy of CBD (10-9 -10-7  M) in preventing epithelial damage and hyperinflammatory response triggered by SARS-CoV-2 spike protein (SP) in a Caco-2 cells. Immunoblot analysis revealed that CBD was able to reduce all the analyzed proinflammatory markers triggered by SP incubation, such as tool-like receptor 4 (TLR-4), ACE-2, family members of Ras homologues A-GTPase (RhoA-GTPase), inflammasome complex (NLRP3), and Caspase-1. CBD caused a parallel inhibition of interleukin 1 beta (IL-1ß), IL-6, tumor necrosis factor alpha (TNF-α), and IL-18 by enzyme-linked immunosorbent assay (ELISA) assay. By immunofluorescence analysis, we observed increased expression of tight-junction proteins and restoration of transepithelial electrical resistance (TEER) following CBD treatment, as well as the rescue of fluorescein isothiocyanate (FITC)-dextran permeability induced by SP. Our data indicate, in conclusion, that CBD is a powerful inhibitor of SP protein enterotoxicity in vitro.


Subject(s)
Cannabidiol , SARS-CoV-2/drug effects , Signal Transduction/drug effects , Spike Glycoprotein, Coronavirus/immunology , COVID-19 , Caco-2 Cells , Cannabidiol/pharmacology , Caspase 1 , Cytokines , Humans , Inflammation , NLR Family, Pyrin Domain-Containing 3 Protein , PPAR gamma , Toll-Like Receptor 4
12.
FASEB J ; 35(9): e21801, 2021 09.
Article in English | MEDLINE | ID: covidwho-1345745

ABSTRACT

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a crucial role in mediating viral entry into host cells. However, whether it contributes to pulmonary hyperinflammation in patients with coronavirus disease 2019 is not well known. In this study, we developed a spike protein-pseudotyped (Spp) lentivirus with the proper tropism of the SARS-CoV-2 spike protein on the surface and determined the distribution of the Spp lentivirus in wild-type C57BL/6J male mice that received an intravenous injection of the virus. Lentiviruses with vesicular stomatitis virus glycoprotein (VSV-G) or with a deletion of the receptor-binding domain (RBD) in the spike protein [Spp (∆RBD)] were used as controls. Two hours postinfection (hpi), there were 27-75 times more viral burden from Spp lentivirus in the lungs than in other organs; there were also about 3-5 times more viral burden from Spp lentivirus than from VSV-G lentivirus in the lungs, liver, kidney, and spleen. Deletion of RBD diminished viral loads in the lungs but not in the heart. Acute pneumonia was observed in animals 24 hpi. Spp lentivirus was mainly found in SPC+ and LDLR+ pneumocytes and macrophages in the lungs. IL6, IL10, CD80, and PPAR-γ were quickly upregulated in response to infection in the lungs as well as in macrophage-like RAW264.7 cells. Furthermore, forced expression of the spike protein in RAW264.7 cells significantly increased the mRNA levels of the same panel of inflammatory factors. Our results demonstrated that the spike protein of SARS-CoV-2 confers the main point of viral entry into the lungs and can induce cellular pathology. Our data also indicate that an alternative ACE2-independent viral entry pathway may be recruited in the heart and aorta.


Subject(s)
Macrophages/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Spike Glycoprotein, Coronavirus/immunology , Acute Disease , Alveolar Epithelial Cells/virology , Animals , B7-1 Antigen , Cell Line , Inflammation Mediators , Interleukin-10 , Interleukin-6 , Lentivirus/genetics , Lentivirus/isolation & purification , Lentivirus/metabolism , Lung/immunology , Lung/pathology , Lung/virology , Macrophages/virology , Male , Membrane Glycoproteins , Mice , Mice, Inbred C57BL , PPAR gamma , RAW 264.7 Cells , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins
13.
Front Immunol ; 12: 666693, 2021.
Article in English | MEDLINE | ID: covidwho-1209418

ABSTRACT

The Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has quickly reached pandemic proportions. Cytokine profiles observed in COVID-19 patients have revealed increased levels of IL-1ß, IL-2, IL-6, and TNF-α and increased NF-κB pathway activity. Recent evidence has shown that the upregulation of the WNT/ß-catenin pathway is associated with inflammation, resulting in a cytokine storm in ARDS (acute respire distress syndrome) and especially in COVID-19 patients. Several studies have shown that the WNT/ß-catenin pathway interacts with PPARγ in an opposing interplay in numerous diseases. Furthermore, recent studies have highlighted the interesting role of PPARγ agonists as modulators of inflammatory and immunomodulatory drugs through the targeting of the cytokine storm in COVID-19 patients. SARS-CoV2 infection presents a decrease in the angiotensin-converting enzyme 2 (ACE2) associated with the upregulation of the WNT/ß-catenin pathway. SARS-Cov2 may invade human organs besides the lungs through the expression of ACE2. Evidence has highlighted the fact that PPARγ agonists can increase ACE2 expression, suggesting a possible role for PPARγ agonists in the treatment of COVID-19. This review therefore focuses on the opposing interplay between the canonical WNT/ß-catenin pathway and PPARγ in SARS-CoV2 infection and the potential beneficial role of PPARγ agonists in this context.


Subject(s)
COVID-19 Drug Treatment , Cytokine Release Syndrome/pathology , PPAR gamma/metabolism , Wnt Signaling Pathway/physiology , beta Catenin/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Cytokines/blood , Humans , PPAR gamma/agonists , SARS-CoV-2/drug effects
14.
Mol Cell Endocrinol ; 520: 111095, 2021 01 15.
Article in English | MEDLINE | ID: covidwho-966632

ABSTRACT

The literature has reported a higher prevalence of negative clinical outcomes due to Coronavirus disease 19 (COVID-19) in obese individuals. This can be explained by the cytokine storm, result from the cytokine production from both obesity and viral infection. Gamma-oryzanol (γOz) is a compound with anti-inflammatory and antioxidant activities. However, little is known about the γOz action as a possible agonist of peroxisome proliferator-activated receptor gamma (PPAR-γ). The aim of this study was to test the hypothesis that γOz attenuates the cytokine storm by stimulating PPAR-γ in the adipose tissue. METHODS: Male Wistar rats were randomly divided into three experimental groups and fed ad libitum for 30 weeks with control diet (C, n = 6), high sugar-fat diet (HSF, n = 6) or high sugar-fat diet + Î³Oz (HSF + Î³Oz, n = 6). HSF groups also received water + sucrose (25%). The γOz dose was 0.5% in the chow. Evaluation in animals included caloric intake, body weight, adiposity index, plasma triglycerides, and HOMA-IR. In adipose tissue was evaluated: PPAR-γ gene and protein expression, inflammatory and oxidative stress parameters, and histological analysis. RESULTS: Adipose tissue dysfunction was observed in HSF group, which presented remarkable PPAR-γ underexpression and increased levels of cytokines, other inflammatory markers and oxidative stress. The γOz treatment prevented adipose tissue dysfunction and promoted PPAR-γ overexpression. CONCLUSION: Natural compounds as γOz can be considered a coadjutant therapy to prevent the cytokine storm in COVID-19 patients with obesity conditions.


Subject(s)
Adipose Tissue/metabolism , COVID-19 Drug Treatment , Cytokine Release Syndrome/drug therapy , Oxidative Stress/drug effects , PPAR gamma/metabolism , Phenylpropionates/pharmacology , SARS-CoV-2/metabolism , Adipose Tissue/pathology , Adipose Tissue/virology , Animals , COVID-19/metabolism , COVID-19/pathology , Cytokine Release Syndrome/metabolism , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Inflammation/virology , Male , Random Allocation , Rats , Rats, Wistar
15.
Molecules ; 25(9)2020 Apr 29.
Article in English | MEDLINE | ID: covidwho-206035

ABSTRACT

The cytokine storm is an abnormal production of inflammatory cytokines, due to the over-activation of the innate immune response. This mechanism has been recognized as a critical mediator of influenza-induced lung disease, and it could be pivotal for COVID-19 infections. Thus, an immunomodulatory approach targeting the over-production of cytokines could be proposed for viral aggressive pulmonary disease treatment. In this regard, the peroxisome proliferator-activated receptor (PPAR)-γ, a member of the PPAR transcription factor family, could represent a potential target. Beside the well-known regulatory role on lipid and glucose metabolism, PPAR-γ also represses the inflammatory process. Similarly, the PPAR-γ agonist thiazolidinediones (TZDs), like pioglitazone, are anti-inflammatory drugs with ameliorating effects on severe viral pneumonia. In addition to the pharmacological agonists, also nutritional ligands of PPAR-γ, like curcuma, lemongrass, and pomegranate, possess anti-inflammatory properties through PPAR-γ activation. Here, we review the main synthetic and nutritional PPAR-γ ligands, proposing a dual approach based on the strengthening of the immune system using pharmacological and dietary strategies as an attempt to prevent/treat cytokine storm in the case of coronavirus infection.


Subject(s)
Coronavirus Infections/pathology , PPAR gamma/agonists , Plants, Medicinal/chemistry , Pneumonia, Viral/pathology , Thiazolidinediones/pharmacology , Animals , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Cytokines/antagonists & inhibitors , Fish Oils/pharmacology , Humans , Ligands , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Seafood/analysis , Spices/analysis
SELECTION OF CITATIONS
SEARCH DETAIL